Mad families and the modal logic of \mathbb{N}^*

Alan Dow

Department of Mathematics and Statistics University of North Carolina Charlotte

August 7, 2019

Alan Dow Mad families and the modal logic of \mathbb{N}^*

에 물 에 에 물

Arch. Math. Logic (2009) 48:231–242 DOI 10.1007/s00153-009-0123-9

Mathematical Logic

The modal logic of $\beta(\mathbb{N})$

Guram Bezhanishvili · John Harding

Alan Dow Mad families and the modal logic of \mathbb{N}^*

Arch. Math. Logic (2009) 48:231–242 DOI 10.1007/s00153-009-0123-9

Mathematical Logic

The modal logic of $\beta(\mathbb{N})$

Guram Bezhanishvili \cdot John Harding or Rather of $\beta \mathbb{N} \setminus \mathbb{N}$

is S4 if $\mathfrak{a} = \mathfrak{c}$ or if ...

・ 同 ト ・ ヨ ト ・ ヨ ト

We recall that **S4** is the least set of formulas containing the Boolean tautologies, the axioms:

 $\begin{array}{c} \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \\ \Box p \rightarrow p \\ \Box \Box p \rightarrow \Box p \end{array}$

and closed under Modus Ponens $(\varphi, \varphi \rightarrow \psi/\psi)$ and Necessitation $(\varphi/\Box \varphi)$. Rela-

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

McKinsey and Tarski defined a valuation ν of formulas of \mathcal{L} into (W, τ) by putting

- ν(p) ⊆ W,
 ν(¬φ) = W − ν(φ),
- $\nu(\neg\varphi) = w \nu(\varphi),$
- $\nu(\varphi \lor \psi) = \nu(\varphi) \cup \nu(\psi)$,
- $\nu(\varphi \land \psi) = \nu(\varphi) \cap \nu(\psi)$,
- $\nu(\varphi \rightarrow \psi) = (W \nu(\varphi)) \cup \nu(\psi)$,
- $\nu(\Box \varphi) = Int(\nu(\varphi)),$
- $\nu(\Diamond \varphi) = \overline{\nu(\varphi)}.$

In definitions and arguments in this paper, we will often economize, and leave out the clauses for disjunction, implication and modal diamond, as these are automatic from the others. Now, call a triple $M = \langle W, \tau, \nu \rangle$ a topological model. A formula φ is said to be true in such a model M if $\nu(\varphi) = W$, and we say that φ is topologically valid if it is true in every topological model. Referring to the second axiomatization of **S4**, which highlights the interior operator, one easily sees its soundness:

If $S4 \vdash \varphi$, then φ is topologically valid.

< ロ > < 同 > < 回 > < 回 > < □ > <

Question

Does \mathbb{N}^* map onto every finite topological space by an open continuous map (with crowded fibers)

4 3 5 4 3 5

Question

Does \mathbb{N}^* map onto every finite topological space by an open continuous map (with crowded fibers)

4 3 5 4 3 5

Question

Does \mathbb{N}^* map onto every finite topological space by an open continuous map (with crowded fibers)

I may not have been the first to show YES for finite T_1 -spaces

Question

Does \mathbb{N}^* map onto every finite topological space by an open continuous map (with crowded fibers)

I may not have been the first to show YES for finite T_1 -spaces

[BH] proved that it suffices to work with finite T_0 -spaces providing we have crowded fibers.

Alan Dow Mad families and the modal logic of \mathbb{N}^*

< ≣⇒

For a finite tree T we use the topology where, for each $t \in T$, t^{\uparrow} is open and $\overline{\{t\}} = t^{\downarrow}$

For a finite tree T we use the topology where, for each $t \in T$, t^{\uparrow} is open and $\overline{\{t\}} = t^{\downarrow}$

Observation

If $f: \omega^* \to T$ is onto, open, and continuous, then for $t \in T \setminus \{\emptyset\}$

For a finite tree T we use the topology where, for each $t \in T$, t^{\uparrow} is open and $\overline{\{t\}} = t^{\downarrow}$

Observation

If $f: \omega^* \to T$ is onto, open, and continuous, then for $t \in T \setminus \{\emptyset\}$

• continuous implies $U_t = f^{-1}(t^{\uparrow})$ is non-empty open,

For a finite tree T we use the topology where, for each $t \in T$, t^{\uparrow} is open and $\overline{\{t\}} = t^{\downarrow}$

Observation

If $f: \omega^* \to T$ is onto, open, and continuous, then for $t \in T \setminus \{\emptyset\}$

- continuous implies $U_t = f^{-1}(t^{\uparrow})$ is non-empty open,
- + f open implies that $f(\partial U_t) = t^{\downarrow} \setminus \{t\}$

For a finite tree T we use the topology where, for each $t \in T$, t^{\uparrow} is open and $\overline{\{t\}} = t^{\downarrow}$

Observation

If $f: \omega^* \to T$ is onto, open, and continuous, then for $t \in T \setminus \{\emptyset\}$

- continuous implies $U_t = f^{-1}(t^{\uparrow})$ is non-empty open,
- + f open implies that $f(\partial U_t) = t^{\downarrow} \setminus \{t\}$
- $t \leq s < s' \in T$ implies $f^{-1}(t)$ is nwd in the nwd $\overline{f^{-1}(s)}$

For a finite tree T we use the topology where, for each $t \in T$, t^{\uparrow} is open and $\overline{\{t\}} = t^{\downarrow}$

Observation

If $f: \omega^* \to T$ is onto, open, and continuous, then for $t \in T \setminus \{\emptyset\}$

- continuous implies $U_t = f^{-1}(t^{\uparrow})$ is non-empty open,
- + f open implies that $f(\partial U_t) = t^{\downarrow} \setminus \{t\}$
- $t \leqslant s < s' \in T$ implies $f^{-1}(t)$ is nwd in the nwd $\overline{f^{-1}(s)}$

related to Veksler Problem: Can \mathbb{N}^* have maximal nwd sets?

and $f : \mathbb{N}^* \to T$

Alan Dow Mad families and the modal logic of \mathbb{N}^*

★ 문 ► ★ 문 ►

Then (not previously known to exist in ZFC)

• U_{t0}, U_{t1}, U_{t2} are disjoint (regular) open sets

- U_{t0}, U_{t1}, U_{t2} are disjoint (regular) open sets
- $U_{t0} \cup U_{t1} \cup U_{t2}$ is dense,

- U_{t0}, U_{t1}, U_{t2} are disjoint (regular) open sets
- $U_{t0} \cup U_{t1} \cup U_{t2}$ is dense,
- $(U_{t0} \cup U_{t1} \cup U_{t2}) \subsetneq U_t \subsetneq \mathbb{N}^*$

- U_{t0}, U_{t1}, U_{t2} are disjoint (regular) open sets
- $U_{t0} \cup U_{t1} \cup U_{t2}$ is dense,
- $(U_{t0} \cup U_{t1} \cup U_{t2}) \subsetneq U_t \subsetneq \mathbb{N}^*$
- $\partial U_{t0} = \partial U_{t1} = \partial U_{t2}$

- U_{t0}, U_{t1}, U_{t2} are disjoint (regular) open sets
- $U_{t0} \cup U_{t1} \cup U_{t2}$ is dense,
- $(U_{t0} \cup U_{t1} \cup U_{t2}) \subsetneq U_t \subsetneq \mathbb{N}^*$
- $\partial U_{t0} = \partial U_{t1} = \partial U_{t2}$

Then (not previously known to exist in ZFC)

- U_{t0}, U_{t1}, U_{t2} are disjoint (regular) open sets
- $U_{t0} \cup U_{t1} \cup U_{t2}$ is dense,

•
$$(U_{t0} \cup U_{t1} \cup U_{t2}) \subsetneq U_t \subsetneq \mathbb{N}^*$$

• $\partial U_{t0} = \partial U_{t1} = \partial U_{t2}$

Beszhanishvili-Harding used $\mathfrak{a} = \mathfrak{c}$, i.e. madf's

now for adf's

Alan Dow Mad families and the modal logic of \mathbb{N}^*

æ

Say that an open $U \subset \mathbb{N}^*$ is an adf* if there is an infinite adf \mathcal{A} such that $U = U_{\mathcal{A}} = \bigcup_{a \in \mathcal{A}} a^*$

伺 ト イヨ ト イヨト

Say that an open $U \subset \mathbb{N}^*$ is an adf* if there is an infinite adf \mathcal{A} such that $U = U_{\mathcal{A}} = \bigcup_{a \in \mathcal{A}} a^*$ i.e. U is paracompact (and not compact) Say that an open $U \subset \mathbb{N}^*$ is an adf* if there is an infinite adf \mathcal{A} such that $U = U_{\mathcal{A}} = \bigcup_{a \in \mathcal{A}} a^*$ i.e. U is paracompact (and not compact)

a point x is in $\partial U_{\mathcal{A}}$ if $x \subset \mathcal{A}^+$ of course $\mathcal{A}^+ = \{X \subset \mathbb{N} : \{a \in \mathcal{A} : X \cap a \neq^* \emptyset \text{ is infinite}\}\}$ Say that an open $U \subset \mathbb{N}^*$ is an adf* if there is an infinite adf \mathcal{A} such that $U = U_{\mathcal{A}} = \bigcup_{a \in \mathcal{A}} a^*$ i.e. U is paracompact (and not compact)

a point x is in $\partial U_{\mathcal{A}}$ if $x \subset \mathcal{A}^+$ of course $\mathcal{A}^+ = \{X \subset \mathbb{N} : \{a \in \mathcal{A} : X \cap a \neq^* \emptyset \text{ is infinite}\}\}$

 $\mathcal A$ is completely separable if each $X\in\mathcal A^+$ contains* some $a\in\mathcal A$

Say that an open $U \subset \mathbb{N}^*$ is an adf^{*} if there is an infinite adf \mathcal{A} such that $U = U_{\mathcal{A}} = \bigcup_{a \in \mathcal{A}} a^*$ i.e. U is paracompact (and not compact)

a point x is in $\partial U_{\mathcal{A}}$ if $x \subset \mathcal{A}^+$ of course $\mathcal{A}^+ = \{X \subset \mathbb{N} : \{a \in \mathcal{A} : X \cap a \neq^* \emptyset \text{ is infinite}\}\}$

 $\mathcal A$ is completely separable if each $X\in\mathcal A^+$ contains* some $a\in\mathcal A$

Simon: tfae

- 1. There is no maximal nwd subset of \mathbb{N}^\ast
- 2. every madf has a completely separable madf refinement

more adf terminology

→ < Ξ >

æ

more adf terminology

Definition

Let $\mathcal{A}_0, \ldots, \mathcal{A}_n$ be adf's

Alan Dow Mad families and the modal logic of \mathbb{N}^*

母 🕨 🖉 🖻 🖌 🦉 🕨

more adf terminology

Definition

Let $\mathcal{A}_0, \ldots, \mathcal{A}_n$ be adf's

• for $X \in \mathcal{A}_0$, $\mathcal{A}_0 \upharpoonright X = \{a \cap X : a \in \mathcal{A}_0\} \setminus [\mathbb{N}]^{<\aleph_0}$

Alan Dow Mad families and the modal logic of \mathbb{N}^*

Let $\mathcal{A}_0, \ldots, \mathcal{A}_n$ be adf's

御 と く ヨ と く ヨ と 二

Let $\mathcal{A}_0, \ldots, \mathcal{A}_n$ be adf's

• for
$$X \in \mathcal{A}_0$$
, $\mathcal{A}_0 \upharpoonright X = \{a \cap X : a \in \mathcal{A}_0\} \setminus [\mathbb{N}]^{<\aleph_0}$

日本・モン・モン

Let $\mathcal{A}_0, \ldots, \mathcal{A}_n$ be adf's • for $X \in \mathcal{A}_0, \mathcal{A}_0 \upharpoonright X = \{a \cap X : a \in \mathcal{A}_0\} \setminus [\mathbb{N}]^{<\aleph_0}$ • $\mathcal{A}_1 \prec \mathcal{A}_0$ if $\mathcal{A}_1 = \bigcup \{\mathcal{A}_1(a) = \mathcal{A}_1 \cap [a]^{\aleph_0} : a \in \mathcal{A}_0\}$ • $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ if also $\mathcal{A}_0^+ \subset \bigcup \{\mathcal{A}_1(a)^+ : a \in \mathcal{A}_0\}$ (corresponds to $\partial U_{\mathcal{A}_0}$ is nwd in $\partial U_{\mathcal{A}_1}$) • $\mathcal{A}_1 \prec^{++} \mathcal{A}_0$ if also each $\mathcal{A}_1(a)$ is a madf on a

Let A₀,..., A_n be adf's
for X ∈ A₀, A₀ ↾ X = {a ∩ X : a ∈ A₀} \ [N]^{<ℵ₀}
A₁ ≺ A₀ if A₁ = ∪{A₁(a) = A₁ ∩ [a]^{ℵ₀} : a ∈ A₀}
A₁ ≺⁺ A₀ if also A⁺₀ ⊂ ∪{A₁(a)⁺ : a ∈ A₀} (corresponds to ∂U_{A₀} is nwd in ∂U_{A₁})
A₁ ≺⁺⁺ A₀ if also each A₁(a) is a madf on a
A₁,..., A_n is a +-partition of A₀ if A⁺₀ = A⁺₁ = ··· = A⁺_n (corresponds to disjoint open with a common boundary)
Definition

Let A₀,..., A_n be adf's
for X ∈ A₀, A₀ ↾ X = {a ∩ X : a ∈ A₀} \ [N]^{<ℵ₀}
A₁ ≺ A₀ if A₁ = ∪{A₁(a) = A₁ ∩ [a]^{ℵ₀} : a ∈ A₀}
A₁ ≺⁺ A₀ if also A⁺₀ ⊂ ∪{A₁(a)⁺ : a ∈ A₀} (corresponds to ∂U_{A₀} is nwd in ∂U_{A₁})
A₁ ≺⁺⁺ A₀ if also each A₁(a) is a madf on a
A₁,..., A_n is a + -partition of A₀ if A⁺₀ = A⁺₁ = ··· = A⁺_n (corresponds to disjoint open with a common boundary)

every infinite completely separable adf \mathcal{A} is +-partitionable and +-refinable because $\mathfrak{c} = |\{a \subset^* X : a \in \mathcal{A}\}|$ for $X \in \mathcal{A}^+$

伺 ト イヨト イヨト

Some difficulties

Alan Dow Mad families and the modal logic of \mathbb{N}^*

æ

If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- So For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many
- \odot it is consistent to have a madf that is not +-partitionable

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- So For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many
- \odot it is consistent to have a madf that is not +-partitionable

Trivially $\mathfrak{a} = \mathfrak{c}$ implies that every madf is +-partitionable and every madf has a \prec^+ -refinement.

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- So For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many
- \odot it is consistent to have a madf that is not +-partitionable

Trivially $\mathfrak{a} = \mathfrak{c}$ implies that every madf is +-partitionable and every madf has a \prec^+ -refinement.

Questions

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- So For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many
- \odot it is consistent to have a madf that is not +-partitionable

Trivially $\mathfrak{a} = \mathfrak{c}$ implies that every madf is +-partitionable and every madf has a \prec^+ -refinement.

QuestionsImage: Do there exist madf's with $\mathcal{A}_1 \prec^+ \mathcal{A}_0$?

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- **②** For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many
- \odot it is consistent to have a madf that is not +-partitionable

Trivially $\mathfrak{a} = \mathfrak{c}$ implies that every madf is +-partitionable and every madf has a \prec^+ -refinement.

Questions

• Do there exist madf's with $A_2 \prec^+ A_1 \prec^+ A_0$?

- If for <u>all</u> madf A₀ there is A₁ ≺⁺ A₀, then there is a completely separable madf (which is presently unknown)
- **②** For all madf A, there is an X ∈ A⁺ such that A ↾ X is +-partitionable into any finitely many
- \odot it is consistent to have a madf that is not +-partitionable

Trivially $\mathfrak{a} = \mathfrak{c}$ implies that every madf is +-partitionable and every madf has a \prec^+ -refinement.

Questions

- Do there exist madf's with $A_2 \prec^+ A_1 \prec^+ A_0$?
- **2** Can A_1 also be +-partitionable?

- 4 周 ト 4 ヨ ト 4 ヨ ト

If $\mathfrak{a} = \aleph_1$ (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists. but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

御 と く き と く き と …

If
$$\mathfrak{a} = \aleph_1$$
 (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists.
but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

Proof.

If $\mathcal{A}_0 = \{a_\alpha : \alpha \in \omega_1\}$, then for each α choose an almost disjoint refinement \mathcal{X}_α for $(\{a_\beta : \beta < \alpha\})^+$

If
$$\mathfrak{a} = \aleph_1$$
 (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists.
but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

Proof.

If $\mathcal{A}_0 = \{a_\alpha : \alpha \in \omega_1\}$, then for each α choose an almost disjoint refinement \mathcal{X}_α for $(\{a_\beta : \beta < \alpha\})^+$

If
$$\mathfrak{a} = \aleph_1$$
 (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists.
but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

Proof.

If $\mathcal{A}_0 = \{a_\alpha : \alpha \in \omega_1\}$, then for each α choose an almost disjoint refinement \mathcal{X}_α for $(\{a_\beta : \beta < \alpha\})^+$

so that $\mathcal{X}_{\alpha} \cup \{a_{\beta} : \beta < \alpha\}$ is an adf (using Balcar-Simon tree π -base trick).

If
$$\mathfrak{a} = \aleph_1$$
 (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists.
but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

Proof.

If $\mathcal{A}_0 = \{a_\alpha : \alpha \in \omega_1\}$, then for each α choose an almost disjoint refinement \mathcal{X}_α for $(\{a_\beta : \beta < \alpha\})^+$

so that $\mathcal{X}_{\alpha} \cup \{a_{\beta} : \beta < \alpha\}$ is an adf (using Balcar-Simon tree π -base trick).

Choose a madf $\mathcal{A}_1(a_\alpha)$ on a_α so that, for each $\beta < \alpha$, each member of $\mathcal{X}_\beta \upharpoonright a_\alpha$ contains infinitely many members of $\mathcal{A}_1(a_\alpha)$.

If
$$\mathfrak{a} = \aleph_1$$
 (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists.
but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

Proof.

If $\mathcal{A}_0 = \{a_\alpha : \alpha \in \omega_1\}$, then for each α choose an almost disjoint refinement \mathcal{X}_α for $(\{a_\beta : \beta < \alpha\})^+$

so that $\mathcal{X}_{\alpha} \cup \{a_{\beta} : \beta < \alpha\}$ is an adf (using Balcar-Simon tree π -base trick).

Choose a madf $\mathcal{A}_1(a_\alpha)$ on a_α so that, for each $\beta < \alpha$, each member of $\mathcal{X}_\beta \upharpoonright a_\alpha$ contains infinitely many members of $\mathcal{A}_1(a_\alpha)$.

Then, for all $X \in \mathcal{A}_0^+$, there is a α such that X mod finite contains a member b of \mathcal{X}_{α} , and so,

If
$$\mathfrak{a} = \aleph_1$$
 (or $\mathfrak{a} = \mathfrak{h} = cof([\mathfrak{h}]^{\aleph_0})$), then $\mathcal{A}_1 \prec^+ \mathcal{A}_0$ exists.
but unlikely that $|\mathcal{A}_1| = \mathfrak{a}$ so no continuing

Proof.

If $\mathcal{A}_0 = \{a_\alpha : \alpha \in \omega_1\}$, then for each α choose an almost disjoint refinement \mathcal{X}_α for $(\{a_\beta : \beta < \alpha\})^+$

so that $\mathcal{X}_{\alpha} \cup \{a_{\beta} : \beta < \alpha\}$ is an adf (using Balcar-Simon tree π -base trick).

Choose a madf $\mathcal{A}_1(a_\alpha)$ on a_α so that, for each $\beta < \alpha$, each member of $\mathcal{X}_\beta \upharpoonright a_\alpha$ contains infinitely many members of $\mathcal{A}_1(a_\alpha)$.

Then, for all $X \in \mathcal{A}_0^+$, there is a α such that X mod finite contains a member b of \mathcal{X}_{α} , and so, there is a $\gamma \ge \alpha$ such that $b \cap a_{\gamma}$ is infinite and contains infinitely many members of $\mathcal{A}_1(a_{\gamma})$.

Alan Dow Mad families and the modal logic of \mathbb{N}^*

æ

Main Lemma

Assume we have adf's $\{\mathcal{A}_t: t\in m^{\leqslant n}\}$ satisfying for $t\in m^{\leqslant n}$

★ 문 ► ★ 문 ► ...

Main Lemma

Assume we have adf's $\{\mathcal{A}_t: t\in m^{\leqslant n}\}$ satisfying for $t\in m^{\leqslant n}$

$$\bullet \ \ \, \mathcal{A}_{\emptyset} \ \, \mathsf{is a madf} \ \, \mathsf{(although} \ \, \mathcal{A}_{\emptyset} = \{\mathbb{N}\} \ \, \mathsf{is fine})$$

(*) *) *) *)

Main Lemma

Assume we have adf's $\{\mathcal{A}_t: t\in m^{\leqslant n}\}$ satisfying for $t\in m^{\leqslant n}$

- \mathcal{A}_{\emptyset} is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

Main Lemma

Assume we have adf's $\{A_t : t \in m^{\leq n}\}$ satisfying for $t \in m^{< n}$

•
$$\mathcal{A}_{\emptyset}$$
 is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

 $\begin{tabular}{ll} \begin{tabular}{ll} \b$

Main Lemma

Assume we have adf's
$$\{A_t : t \in m^{\leq n}\}$$
 satisfying for $t \in m^{< n}$

•
$$\mathcal{A}_{\emptyset}$$
 is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

$$\{ \mathcal{A}_{t \frown i} : i < m \} \text{ is a } + \text{-partition of } \bigcup_{i < m} \mathcal{A}_{t \frown i} \\ \text{ hence } \mathcal{A}_{t \frown i} \prec^+ \mathcal{A}_t$$

e.g.
$$\bigcup \{ \mathcal{A}_t : t \in m^k \}$$
 is a madf for each $k \leq n$

・ロト ・ 同ト ・ ヨト ・ ヨト …

Main Lemma

Assume we have adf's
$$\{A_t : t \in m^{\leq n}\}$$
 satisfying for $t \in m^{< n}$

•
$$\mathcal{A}_{\emptyset}$$
 is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

$$\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll}$$

e.g.
$$\bigcup \{ \mathcal{A}_t : t \in m^k \}$$
 is a madf for each $k \leq n$

then $\{U_{\mathcal{A}_t}: t\in m^{\leqslant n}\}$ codes the desired map

Main Lemma

Assume we have adf's
$$\{A_t : t \in m^{\leq n}\}$$
 satisfying for $t \in m^{< n}$

•
$$\mathcal{A}_{\emptyset}$$
 is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

$$\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll}$$

e.g.
$$\bigcup \{ \mathcal{A}_t : t \in m^k \}$$
 is a madf for each $k \leq n$

then $\{U_{\mathcal{A}_t}: t \in m^{\leqslant n}\}$ codes the desired map

Corollary

If there is a completely separable madf, then $\{A_t : t \in m^{\leq n}\}$ as above exists for all n, m,

Main Lemma

Assume we have adf's
$$\{A_t : t \in m^{\leq n}\}$$
 satisfying for $t \in m^{< n}$

•
$$\mathcal{A}_{\emptyset}$$
 is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

$$\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll}$$

e.g.
$$\bigcup \{ \mathcal{A}_t : t \in m^k \}$$
 is a madf for each $k \leq n$

then $\{U_{\mathcal{A}_t}: t \in m^{\leqslant n}\}$ codes the desired map

Corollary

If there is a completely separable madf, then $\{A_t : t \in m^{\leq n}\}$ as above exists for all n, m, hence \mathbb{N}^* will map onto every $m^{\leq n}$ by an open continuous map.

Question

For which n, m does such a family $\{A_t : t \in m^{\leq n}\}$ exist? Are there natural ZFC constructions? Is this equivalent to the existence of a completely separable madf?

Question

For which n, m does such a family $\{A_t : t \in m^{\leq n}\}$ exist? Are there natural ZFC constructions? Is this equivalent to the existence of a completely separable madf?

Here is a new tree:

Question

For which n, m does such a family $\{A_t : t \in m^{\leq n}\}$ exist? Are there natural ZFC constructions? Is this equivalent to the existence of a completely separable madf?

Here is a new tree:

Definition

Let
$$T_{n,m} = m^{\leqslant n} \cup \{t^\frown m : t \in m^{\leqslant n}\} \subset (m+1)^{\leqslant n}$$

i.e. the subtree of $(m+1)^{\leqslant n}$ such that having m in the range makes it a maximal node.

Image: A matrix and a matrix

æ

→ 문 → ★ 문 →

There is an infinite completely separable adf A.

< ∃ ► < ∃ ►

There is an infinite completely separable adf A.

Lemma

There exist adf's $\{A_t : t \in m^{\leq n}\}$ satisfying for $t \in m^{< n}$

- ∢ ⊒ →

There is an infinite completely separable adf A.

Lemma

There exist adf's $\{A_t : t \in m^{\leq n}\}$ satisfying for $t \in m^{< n}$

• \mathcal{A}_{\emptyset} is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

There is an infinite completely separable adf A.

Lemma

There exist adf's $\{A_t : t \in m^{\leq n}\}$ satisfying for $t \in m^{< n}$

- \mathcal{A}_{\emptyset} is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

There is an infinite completely separable adf A.

Lemma

There exist adf's $\{A_t : t \in m^{\leq n}\}$ satisfying for $t \in m^{< n}$

•
$$\mathcal{A}_{\emptyset}$$
 is a madf (although $\mathcal{A}_{\emptyset} = \{\mathbb{N}\}$ is fine)

$$\bigcirc \bigcup_{i < m} \mathcal{A}_{t \frown i} \prec^{+} \mathcal{A}_{t} \ (a \in \mathcal{A}_{t} \ \mathsf{NOT} \text{ refined by a madf})$$

$$\{ \mathcal{A}_{t \frown i} : i < m \} \text{ is a } + \text{-partition of } \bigcup_{i < m} \mathcal{A}_{t \frown i} \\ \text{ still have } \mathcal{A}_{t \frown i} \prec^{+} \mathcal{A}_{t}$$

* E > * E >

There is an infinite completely separable adf A.

Lemma

There exist adf's $\{A_t : t \in m^{\leq n}\}$ satisfying for $t \in m^{< n}$

$$\{ \mathcal{A}_{t} \frown_{i} : i < m \} \text{ is a } + \text{-partition of } \bigcup_{i < m} \mathcal{A}_{t} \frown_{i} \\ still \text{ have } \mathcal{A}_{t} \frown_{i} \prec^{+} \mathcal{A}_{t}$$

Proof.

Same construction except that, for $t \in m^{\leq n}$ and $a \in A_t$, $\bigcup_{i \leq m} A_{t^{\frown}i}(a)$ is a completely separable adf but not mad
LAST SLIDE!!!

Theorem

There is an open continuous map from \mathbb{N}^* onto $T_{n,m}$

▲ 御 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Theorem

There is an open continuous map from \mathbb{N}^* onto $T_{n,m}$

Proof.

Start with $\{\mathcal{A}_t : t \in (m+1)^{\leq n}\}$ and for $t \in m^{\leq n}$, $U_t = U_{\mathcal{A}_t} \text{ AND } U_{\mathcal{A}_t \frown m} \subset U_{t \frown m} = \bigcup_{a \in \mathcal{A}_t} a^* \setminus \operatorname{cl} (\bigcup_{i < m} U_{t \frown i})$

Loosely speaking: $U_{t \frown m}$ absorbs the missing non-madness part of each $a \in A_t$ and makes up for the fact that we weren't using a completely separable madf at each step.

Theorem

There is an open continuous map from \mathbb{N}^* onto $T_{n,m}$

Proof.

Start with $\{\mathcal{A}_t : t \in (m+1)^{\leq n}\}$ and for $t \in m^{\leq n}$, $U_t = U_{\mathcal{A}_t} \text{ AND } U_{\mathcal{A}_t \frown m} \subset U_{t \frown m} = \bigcup_{a \in \mathcal{A}_t} a^* \setminus cl(\bigcup_{i < m} U_{t \frown i})$

Loosely speaking: $U_{t \frown m}$ absorbs the missing non-madness part of each $a \in A_t$ and makes up for the fact that we weren't using a completely separable madf at each step.

Now for some finite topology!

 $T_{n,m}$ maps onto $m^{\leq n}$ by an open continuous map. Solving the Modal Logic problem.